A. GENERAL AND ORGANIZATIONAL ASPECTS

1. Denomination of the study
 Aquatic resource management

2. General organization

 Institution or institutions: Can Tho University
 Study regime (full time/partial time): Full time
 Modality (on-site, on-line, mixt): On-site
 Complete time: 3 years
 Training period (annual, half-yearly, quarterly): annual
 Credits number to be achieved: 90
 Language: Vietnamese
 Professional prospects (research, professional, mixt): mixt

3. Objectives

 To train the PhD students to obtain (i) broad and holistic knowledge on the area of Aquatic biodiversity and conservation; (ii) proactive, creative and independent thinking; (iii) capability to lead and manage research activities; (iv) ability to solve specialized issues at national and international scales/levels.

4. Outcomes

 - Obtain comprehensive and holistic knowledge on management and protection of aquatic resources in linkage of conservation and development of aquatic resources;
 - Master firmly broad and deep knowledge on aquatic biodiversity and conservation;
 - Develop new thinking in organizing specialization and research activities to solve necessary problems in the field of aquatic biodiversity and conservation;
 - Obtain holistic knowledge on laws, management and protection of environment, especially biodiversity and aquatic resources;
 - Detect and analyse sophisticated problems and propose creative recommendations for solving these problems; to create new knowledge from dissertation expertise and aquatic biodiversity and conservation;
 - Write scientific papers and reports; rise own point of view on issues of specialization;
- Establish and take part in national and international collaborative networks for specialization activities;
- Synthesize collective thought and lead in expertise to solve problems at national and international levels;
- Adapt well to global integration working environment; be capable of leading and influencing to the strategic orientation of the organization;
- Be capable of decision making on planning, management of research activities, knowledge development, creation and new process.

5. Admission

Maximum number of students: 5

Admission and selection criteria or merits assessment:

- Graduated from fields of Aquatic resource management; Fishing technology; Aquaculture; Fish pathology. Other fields related to Aquatic resource diversity and conservation will be considered based on academic performance of undergraduate level.
- Candidates have to be qualified in English with IETLS of 5 and be an author or co-author of a published paper in the related fields.

Previous studies acknowledgement:

Aquatic resource management, Fishing technology, Aquaculture, Fish pathology, Ecology

B. JUSTIFICATION

1. **Comparability of the qualification in the international context**

High qualified human resources are definitely at high demand especially under conditions of rapidly growing economics. In addition due to the rapid development from agriculture, aquaculture, industry, etc… stress are also increasingly formulated and threatening the environment in which natural resources are the most vulnerable targets. Aquatic resources have been playing an important role in the development of a region, especially livelihood of millions people who are living nearby and one of the most damaging source. Many impacts from uncontrolled development such as pollution, habitat alternation, overfishing… are the most critical factor causing dramatic decline of the resources. Protection and conservation of the resources are very indispensable to sustain the environment. Higher qualified human resources are needed in order to handle such a challenge especially in combination with global climate change. The PhD curriculum of Aquatic resource diversity and conservation was formulated to meet that demand. Many PhD programs in aquatic biodiversity have been formulated to offer opportunities for students to enhance their capacity in finding principles, mechanisms and solutions to protect the resources. This program has also been examined under support of University of Girona. Therefore, the curriculum is not only relevant to the conditions of the Mekong Delta and Vietnam but also meet global...
requirement, especially in the region. Students from the Mekong River riparian can apply to pursue this program.

2. Internal academic referent

 a. Relationship with other existent degrees with official character:

Master program in Aquatic resources management has been operated since 2010 and graduates from this MSc program can be certainly candidates of this PhD program. The PhD program in Aquatic resources management is under developed and will be offering shortly in the coming time. In addition, outputs of the traditional MSc program in Aquaculture would be also the inputs of this program.

At the BSc level, the same fields with MSc levels are also offered. With current regulation, students graduated from BSc level but qualified with great distinction grade can go straight to PhD level.

 b. Existent offer in CTU of similar programmes:
 - BSc. in Aquatic resource management
 - BSc. in Natural resource and environment management
 - BSc in Aquaculture
 - MSc. in Aquatic resource management
 - MSc. in Natural resource and environment management
 - MSc in Aquaculture
 - MSc. in Ecology

 c. Research lines that supports the programme:

The research groups of the CONSEA Universities supporting this initiative are:

<table>
<thead>
<tr>
<th>Research group code</th>
<th>Research group name</th>
<th>Number of members</th>
<th>Number of projects*</th>
<th>Number of agreements*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTU Aquatic resources</td>
<td>Aquatic Resources, Biodiversity, Taxonomy</td>
<td>6</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>CTU Aquatic environment and ecology</td>
<td>Aquatic Environment Monitoring, Ecology, Aquatic invertebrates</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>CTU Environment and natural resources</td>
<td>Environment, Natural resources, Modelling, Remote sensing</td>
<td>10</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

3. Society needs (demand)
Under many anthropogenic impacts including overfishing, pollution, habitat alternation, invasive species the aquatic resources have been dramatically declined. Management, protection and conservation of the resources are extremely indispensable. Highly qualified human resources who are able to initiate, create, and direct all activities related to protection and conservation of the resources are highly demanded.

4. Potential source of students

PhD students recruited for this program can be the ones who have graduated from MSc. programs (Aquatic resource management, Aquaculture, Ecology) or directly from the same fields BSc. programs. The other sources are from staff who is working in the governmental and non-governmental organizations, from universities and research institutes.

C. ACADEMIC ASPECTS

1. Training goals of the study: competences profile
 a. Characteristics and objectives of the degree

The PhD program in Aquatic resource diversity and conservation was formulated in the framework of the project “Developing curricula for Environmental safety and Conservation of the Biodiversity in South-East Asia” (CONSEA) with support from University of Toulouse III-Paul Sabatier (France), University of Gent (Belgium), University of Girona (Spain) and University of Natural Resources and Life Sciences (BOKU – Austria). The programme is designed to provide students with an interdisciplinary education emphasizing in aquatic resource biodiversity and conservation at deeper and broader levels. The PhD students are supplemented with knowledge on applied biotechnology in aquatic resources, efficient tool in resource management and conservation and research topics which lead them to be able to be proactive and initiative in the practice.

b. Target groups /audience

- Graduate students holding MSc. degree in related fields of study
- Qualified graduate students holding BSc. degree in related fields of study
- Staff from governmental organizations working in the same fields
- Staff from non-organizations who are working on biodiversity and conservation areas
- Others who are interest in the program

c. Output profile of the graduates

After graduation, students are capable to work independently with different positions such as leader, manager, officer in governmental or non-governmental organizations; researcher or lecturer on biodiversity conservation, aquatic resources of national or international institutions.
d. Competences explanation

i. Transversal competences (general)
 - Ability to analyse and synthesis
 - Ability to analyse and assess
 - Ability to analyse and apply
 - Ability to organize and direct
 - Ability decide and manage
 - Ability to criticize
 - Ability to review
 - Ability to manage and plan
 - Decision making
 - Skills of communication
 - Team working

ii. Specific competences
 - Analysing data
 - Interpreting data
 - Comparing data
 - Managing data
 - Writing paper
 - Publishing research results
 - Wiring research proposals
 - Design and establish a protected area
 - Plan and conduct a specific activity related to the study field
 - Integrate working with other teams

2. Curricular structure

The curriculum contains 90 credits in which 12 credits of course work and the rest are research work. Among 12 theoretical credits, 8 are compulsory and 4 are elective. The research work consists of 9 credits of literature review (1 overview and 2 specialized topics), 13 credits for publication (2 papers – 8 credits) and conference attendance (5 credits), 5 credits for seminar, 7 credits for teaching assistance or MSc thesis guidance, 8 credits for English proficiency and 36 credits for conducting research.

3. Professors profile (expertise)

See below

4. Envisage measures for students mobilities

Under the CONSEA project, PhD students will have chances to go to one of the European universities including University of Toulouse III-Paul Sabatier (France),
University of Gent (Belgium), University of Girona (Spain) and University of Natural Resources and Life Sciences (BOKU–Austria).

5. Envisage of possible collaborations with other professionals and researches that not will hold the professor status.

D. Courses Description of PhD programme in Aquatic resource diversity and conservation

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. Course Work</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1). Compulsory courses (8 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSQ901</td>
<td>Applied biotechnology in aquatic resources management</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>TSQ902</td>
<td>Aquatic resources and climate change</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>TSQ903</td>
<td>Applied statistic and scientific writing</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>TSQ904</td>
<td>Modelling in aquatic resources management</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2). Elective courses (4 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSQ905</td>
<td>Marine resources conservation and development</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>TSQ906</td>
<td>Aquatic environment assessment</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>TSQ907</td>
<td>Fish population dynamics</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>TSQ908</td>
<td>Bio-indicators and application</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>3). Specialized topics (9 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature overview</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Topic 1</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Topic 2</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>B. Research Work (69 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Research proposal</td>
<td>20</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>Publication</td>
<td>9</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Conference</td>
<td>5</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Workshop</td>
<td>5</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Thesis writing</td>
<td>30</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>Total (I + II)</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

A: Course Work

1). Oriented courses

TSQ901 APPLIED BIOTECHNOLOGY IN AQUATIC RESOURCES MANAGEMENT

Course Description
The course will provide knowledge on biotechnology and tools for protecting, managing and conserving the aquatic resources. Genetic techniques and marking or tagging technology will be introduced and practiced as helpful technique and tools to track migratory path or assessing the fragmentation or disconnectivity of aquatic populations. Measures for protection, management and conservation of the resources will be proposed and applied accordingly.

Learning Outcomes:
- Master firmly principles of applied biotechnology in aquatic resources management
- Understand broadly techniques used in assessing the resources
- Apply biotechnology in protecting, managing and conserving the resources
- Generate appropriate methods for aquatic resource protection and management

Competences
- Select and handle well biotechnology tools for assessing and managing aquatic resources
- Propose and design plan for applying biotechnology in assessing and managing aquatic resources
- Instruct the application of tools in assessing and managing aquatic resources

Teaching methods:
Teaching methods include lecturing and presentation. After lecturing the core issues of the course, each student must presents 1-2 topics related to the course. Discussion is encouraged during class to exert more understanding about the course and interactions among students, materials, and teacher.

Assessment methods:
The grading will be based on follows:
- Debate ability (10%)
- Presentation/Seminar (30%)
- Final exam (60%)
Module cumulative GPA is calculated by sum of units and to one decimal place then transferred into mark in word and 4.0 GPA (one decimal place) following Can Tho University’s Academic Rules.

Teachers’ profile
Duong Thuy Yen, PhD, Associate Professor

- Working institution: College of Aquaculture and Fisheries, Can Tho University (Vietnam)
- Contacts: thuyyen@ctu.edu.vn; Tel: +84 907526845
- Qualification: PhD in Fisheries and Wildlife, Ecology, Evolutionary Biology and Behavior
- Teaching fields: Genetics
- Research fields: Genetic population of fish, DNA barcoding
- Recent publications:

Languages
Vietnamese and English

TSQ902 AQUATIC RESOURCES AND CLIMATE CHANGE
Course Description

The course will provide knowledge on aquatic resources including diversity of vertebrates (fish, amphibians, mammals, reptiles, birds), invertebrates (crustaceans, molluscs, cnidarians,…) and plants (micro algae, seaweed, sea grass…), their
importance and roles; impacts of climate changes on the resources, measures for mitigation of the impacts…

Learning Outcomes:
- Master firmly aquatic resources, their diversity and importance
- Master firmly the impacts of climate changes on aquatic resources
- Master firmly possible climate change impact mitigation measures

Competences
- Identify the important aquatic species
- Determine single impact of climate change on important aquatic species
- Apply possible measures to mitigate the impacts of climate change on aquatic resources
- Propose possible measures to mitigate the impacts of climate change on aquatic resources

Teaching methods:
- Class lectures
- Group discussion
- Presentation

Assessment methods:
- Attendance (5%)
- Work assignment (presentation/discussion) (15%)
- Lab work (30%)
- Final exam (Compulsory) (50%)

Grading components and final test scores will be marked on a scale of 10 (0 to 10), rounded to one decimal place. Subject score is the sum of all the components of the evaluation multiplied by the corresponding weight. The subject score is marked on a scale of 10 and rounded to one decimal place, then is converted to A-B-C-D score and score on a scale of 4 under the academic provisions of the University.

Teachers’ profile

Vu Ngoc Ut, PhD and Associate professor
- Working institution: College of Aquaculture and Fisheries, Can Tho University (Vietnam)
- Contacts: vnut@ctu.edu.vn; Tel: +84 913618858
- Qualification: MSc in Aquaculture from Gent University (1997); PhD in Applied marine biology from University of Wales Bangor, UK (2003).
- Teaching fields: Aquatic ecology, Aquatic invertebrates, Aquatic biodiversity and conservation, Aquatic bio-monitoring
- Research fields: Biodiversity, Water quality, Bio-monitoring, Live food production
- Recent publications:

Teachers’ profile
Tran Dac Dinh, PhD and Associate Professor
- Working institution: College of Aquaculture and Fisheries, Can Tho University (Vietnam)
- Contacts: tddinh@ctu.edu.vn
- Qualification: PhD in Fish Population Dynamics at University Malaysia Terengganu
- Teaching fields: Fishing Technology and Fish Stock Assessment and Management
- Research fields: Fishing Technology and Fish Stock Assessment and Management
- Recent publications:
 - Dinh, Quang M., Jian G. Qin, and Dac D. Tran (2015) Population and Age Structure of the Goby Parapocryptes serperaster (Richardson, 1864; Gobiidae: Oxudercinae) in the Mekong Delta. Turkish Journal of Fisheries and Aquatic Sciences, 15: 345-357.

Nguyen Minh Tuan, Tran Dac Dinh, Nguyen Hoai Anh, Tran Trung Kien and Vo Hoang Lam Truc (2013) The species composition of goby (Gobiidae and Eleotridae) and some feeding, reproductive biology characteristics of the goby Boleophthalmus boddarti (Pallas, 1770), in the Ben Tre coastal areas. Science and Technology Journal of Agriculture and Rural Development (ISSN:1859-4581), 12/2013: 175-1782.

Languages
Vietnamese and English

TSQ903 APPLIED STATISTIC AND SCIENTIFIC WRITING

Course Description

The aims of this course are to provide methodology and skills on data analysis and scientific paper writing to help PhD students complete their research and dissertation and able to instruct other students and manage proficiently the data in their future careers.

Learning Outcomes:
- Master methodology for statistical analysis
- Understand principles of scientific research;
- Analyse well data
- Understand correct ways to review and to cite scientific literature
- Apply principles in experimental design and statistical analysis

Competences
- Design well experiments
- Treat proficiently data
- Arrange data scientifically
- Write professionally a scientific paper and thesis
- Present research results at conference and thesis defense
- Analyze data using common statistical software
Teaching methods:
- Lecture (theory)
- Computer Lab and take home exercises

Assessment methods:
- Lab exam (25%)
- Mildterm exam (15%)
- Final exam (60%)

Grading components and final test scores will be marked on a scale of 10 (0 to 10), rounded to one decimal place. Subject score is the sum of all the components of the evaluation multiplied by the corresponding weight. The subject score is marked on a scale of 10 then converted to A-B-C-D score based on the academic provisions of the University.

Teachers’ profile
Nguyen Thanh Phuong, PhD, Professor
- Working institution: College of Aquaculture and Fisheries, Can Tho University (Vietnam)
- Contacts: ntphuong@ctu.edu.vn
- Qualification: MSc. in Aquaculture at Asian Institute of Technology and PhD in Agricultural Sciences (specialized in Aquaculture) from Institut Nationale Polytechnique de Toulouse, France.
- Teaching fields: Principles in Aquaculture, Scientific research methodology, Marine aquaculture
- Research fields: Marine species farming, aquaculture and fisheries under climate changes, fish nutrition, fish physiology, bio-active plan products for aquaculture.…
- Recent publications:
 - Nguyen Thi Ngoc Hon, Tran Thi Tuyet Hoa, Nguyen Quoc Thinh, Atsushi Hinenoya, Tatsuya Nakayama, Kazuo Harada, Megumi

Rasmus Ern, Do Thi Thanh Huong, Nguyen Thanh Phuong, Peter Teglberg Madsen, Tobias Wang, Mark Bayley (2015). Some like it hot: Thermal tolerance and oxygen supply capacity in two eurythermal crustaceans. Scientific Reports 06/2015; 5. DOI:10.1038/srep10743.

Co-Teachers’ profile

Vo Nam Son, PhD, Associate Professor

- Working institution: College of Aquaculture and Fisheries, Can Tho University (Vietnam)
- Contacts: vnson@ctu.edu.vn
- Qualification: MSc. and PhD in Aquaculture at Asian Institute of Technology, Thailand.
- Teaching fields: Crustacean farming, Applied statistic in Aquaculture
- Research fields: Marine species farming, Aquaculture socio-economics
Recent publications:
- **Vo Nam Son**, Nguyen Duong Anh, Phan Thanh Lam, Ly Van Khanh, Tran Ngoc Hai and Nguyen Thanh Phuong. 2015. Nutrient characteristics and benefit of sediment re-used of tra catfish pond for agriculture in the Mekong Delta. Journal of Science, Can Tho University, No 38b, 116-123.
- Ly Van Khanh, **Vo Nam Son**, Chau Tai Tao and Tran Ngoc Hai. 2015. Effect of alkalinity on etamorphic and survival rate of mud crab larvae (*Scylla paramamosain*). Journal of Science, Can Tho University, No 38b, 61-65.

Languages: Vietnamese and English

TSQ904 MODELLING IN AQUATIC RESOURCES MANAGEMENT

Course Description

The course will provide PhD students knowledge on principles of modelling using different tools and techniques to develop models or scenarios for aquatic resource management. Practical will be also provided to train the students practicing in development different models based on available data for monitoring and management of the resources.

Learning Outcomes:
- Understand the principles in using modelling techniques;
- Develop scenarios and models for resource management
- Analyse and assess available data for modelling
- Apply modelling system in monitoring and management of the resources

Competences
- Utilize proficiently modelling techniques
- Manipulate and compute data for running a modelling
- Interpret data and scenario in resource management

Teaching methods:
- Lecture (theory)
- Computer Lab and take home exercises

Assessment methods:
- Lab exam (30%)
- Final exam (60%)

Grading components and final test scores will be marked on a scale of 10 (0 to 10), rounded to one decimal place. Subject score is the sum of all the components of the evaluation multiplied by the corresponding weight. The subject score is marked on a scale of 10 then converted to A-B-C-D score based on the academic provisions of the University.

Teachers’ profile
Van Pham Dang Tri, PhD and Associate Professor
- Working institution: College of Environment and Natural Resources, Can Tho University (Vietnam)
- Contacts: vpdtri@ctu.edu.vn
- Qualification: PhD. in Physical Geography at Southampton University, the UK
- Teaching fields: Water modelling, hydrological dynamics
- Research fields: Modelling, mapping, hydrology
- Recent publications:

Languages: Vietnamese and English

TSQ905 MARINE RESOURCES CONSERVATION AND DEVELOPMENT

Course Description

The aims of this course are to offer students the advanced knowledge on marine resources, their diversity and importance; status and trends in protecting and conserving the resources; and importantly how to develop the resources in terms of exploitation and development sustainably.

Learning Outcomes:

- Understand deeply on the resources and principles of conservation;
- Understand firmly the mechanisms of resource exploitation and development;
- Analyse and assess the correlation between resource exploitation and development;
- Develop model, systems for sustainable exploitation and development of the resources in sustainable ways

Competences

- Determine and decide proper solution
- Establish a system for exploitation and development of the resources
- Assess and propose better measures for resource management and development

Teaching methods:
- Class lectures
- Group discussion
- Presentation

Assessment methods:
- Attendance (5%)
- Work assignment (presentation/discussion) (15%)
- Lab work (30%)
- Final exam (Compulsory) (50%)

The subject score is marked on a scale of 10 and rounded to one decimal place, then is converted to A-B-C-D score and score on a scale of 4 under the academic provisions of the University.

Teachers’ profile
Tran Dac Dinh, PhD and Associate Professor (see above)

Languages
Vietnamese

TSQ906 AQUATIC ENVIRONMENT ASSESSMENT

Course Description

This course will provide students the overview of aquatic environment with abiotic and biotic factors that can influence on biodiversity of an ecosystem. Holistic assessment will be also given to aware of the potential agents that can be coming from different sources, especially anthropogenic activities on the resources. Parameters of factors that influence direct and indirect to the resources but positively and negatively will be also evaluated.

Learning Outcomes:
- Master firmly the aquatic environment;
- Understand ecological relationship between biotic and abiotic factors in an ecosystem;
- Master the impacts of water parameters on biodiversity;
- Analysis and assess the importance of environment on aquatic resources

Competences
- Manipulate proficiently tools for environment assessment
- Assess the status and potential of aquatic environment
- Propose solution to manage the environment
Teaching methods:
- Class lectures
- Group discussion
- Presentation

Assessment methods:
- Attendance (5%)
- Mildterm exam (25%)
- Final exam (70%)
The subject score is marked on a scale of 10 and rounded to one decimal place, then is converted to A-B-C-D score and score on a scale of 4 under the academic provisions of the University.

Teachers’ profile:
Huynh Truong Giang, PhD
- Working institution: College of Aquaculture and Fisheries, Can Tho University (Vietnam)
- Contacts: htgiang@ctu.edu.vn
- Qualification: PhD in Aquaculture at National Pingtung University of Science Aquaculture and Technology Taiwan
- Teaching fields: water quality management, Analytical methods
- Research fields: water quality, probiotics, prebiotics
- Recent publications:

Languages: Vietnamese and English

TSQ907 FISH POPULATION DYNAMICS

Course Description

The objectives of this course are to provide PhD students broaden and advanced knowledge on fish population dynamics including temporal (seasons and year to year) and spatial dynamics (tropical versus temperate regions and different ecosystems) on population numbers, age structure, biomass; and solutions or measures to protect and manage the population.

Learning Outcomes:
- Understand fish population dynamics;
- Master firmly all processes linked to population;
- Apply knowledge of population dynamics to manage fish stocks;

Competences
- Analysis and assess status of a fish population for sustainable management
- Propose solution to manage fish populations

Teaching methods:
- Class lectures
- Presentation

Assessment methods:
- Attendance (5%)
- Work assignment (presentation/discussion) (25%)
- Final exam (70%)
The subject score is marked on a scale of 10 and rounded to one decimal place, then is converted to A-B-C-D score and score on a scale of 4 under the academic provisions of the University.

Teachers’ profile

Tran Dac Dinh, PhD and Associate Professor (see above)

Tran Xuan Loi, PhD candidate

- Working institution: College of Aquaculture and Fisheries, Can Tho University (Vietnam)
- Contacts: txloi@ctu.edu.vn;
- Qualification: MSc in Marine conservation from University of Tasmania, Australia; PhD candidate in Bioresources restoration sciences, Nagasaki University, Japan.
- Teaching fields: Fisheries stock assessment, Fisheries resources management
- Research fields: Fisheries resources, Fish biodiversity, Fisheries stock assessment,
- Recent publications:
 o Ngwenya Elkana, Phuc Le, and Tran Xuan Loi, 2013. A global study of gender differences in individual perspectives on loss of plant or animal biodiversity: Results from the world value surveys. Eleventh International Conference on New Directions in the Himanities, June 2013 Faculty of the Himanities, EÖtvÖs Loránd University, Budapest, Hungary.

Languages: Vietnamese and English
TSQ908 BIO-INDICATORS AND APPLICATION

Course Description

This course will provide the learners knowledge of bio-indication and bio-indicators, bio-monitoring methodologies, rapid assessment of water quality based on aquatic organisms including algae, macro-invertebrates, fish.; bio-indices used in assessing the water quality and their advantages and disadvantages; application of bio-monitoring in monitoring and managing the water quality as well as biodiversity.

Learning Outcomes:
- Master firmly the principles and mechanisms of bio-monitoring;
- Master firmly all biological and ecological characteristics of aquatic organisms used as bio-indicators;
- Master methodologies and use of different bio-indices as tools to assess the water quality for monitoring;

Competences
- Know how to collect/sample aquatic groups for bio-monitoring
- Identify common aquatic organisms used in bio-monitoring
- Apply proficiently bio-indices in water quality and biodiversity assessment
- Apply proficiently bio-monitoring methodologies for water quality and biodiversity assessment

Teaching methods:
- Class lectures
- Presentation

Assessment methods:
- Attendance (5%)
- Work assignment (presentation/discussion) (25%)
- Final exam (70%)

Teachers’ profile
Vu Ngoc Ut, PhD and Associate Professor (see above)

Languages: Vietnamese and English

1). PhD Advisory Committee (PAC)
 a) Advisory committee member
The aim of the "PhD Advisory Committee" (denoted as PAC thereafter) is to monitor the progress of PhD students to help ensure successful completion of their theses. In addition, the PAC is also there to mediate in case of conflicts and/or communication difficulties between the student and advisor. PAC meetings are not an examination of the student.

b) **Advisory committee meeting**

PAC meetings focus on sufficient support from PhD student’s advisor, progress of research schedule, equipment necessary supporting research activities, joining international conferences etc. Additionally, meetings will take place around the end of the second and third year. The last meeting will focus on the structure and timing of the final months of the thesis.

2). **Research proposal**

A research proposal is a required document as part of an application for admission to a research degree at the University. It is necessary to prepare concisely/clearly the research proposal of the proposed research project. The proposal should be prepared by student and reviewed by advisor(s) before submission. In addition, the financial issues related to the research must be mentioned (which project? other sources...). If the proposal is admitted, this initial research proposal will be used as a basis for preparation of student final research program in your first year of candidature.

3). **Publication**

According to the regulations for the doctoral program of Can Tho University, the student must meet the requirements of publications as follow:
- At least 02 main-author papers based on the obtained results from the thesis, of which at least 01 main-author-ISI papers or Scopus journal, or
- At least 02 main-author papers published on peer reviewed international conference proceedings, or
- At least 02 main-author papers published on peer reviewed international journals

4). **Conference**

- Participating at at least 01 national conference and 01 international conference (Poster or oral presentation)

5). **Workshop**

- Participating at at least 01 national/international conferences

6). **Thesis writing**

a) Thesis format & guideline
b) -Thesis evaluation
c) -Thesis defense
d) -Thesis correction

Expected skills and competences

- Abilities in thinking and organizing, rethinking and reorganizing
- Good English skills, especially reading and writin
- Good statistic understanding/performance for data analysis
- Ability to write the comprehensive the research proposal
- Good study habits and self-learning ability

C: Research Area

Describe the research focused area of the PhD program and potential research topics for PhD students

Research focused areas:
- Genetic conservation
- Freshwater/marine ecology
- Marine biology and Conservation
- Climate change

Potential research topics for PhD students should be:
- Freshwater biodiversity conservation
- Marine biodiversity conservation
- Biomonitoring as a tool for water quality management
- Bioindicators in ecosystem along Mekong river
- Impact of climate change on the aquatic resources
- Fish population dynamics in estuaries in Mekong delta.
- Effects of manmade factors (e.g. fishing, invasive species, climate change)
- Conservation genetics of native species
- Species at risk, their habitats and sampling methods
- ...