MINISTRY OF EDUCATION AND TRAINING CAN THO UNIVERSITY

COURSE OUTLINE DETAILS

1. Course: Applied statistics and Experimental design (Thống kê và phép thí nghiệm)

- Code number: AQ214

- Credits: 3

- Hours: 30 theory hours, 30 practice hours, 60 self-study

2. Management Unit:

- Department: Coastal aquaculture

- Faculty: College of Aquaculture and Fisheries

3. Requisites:

- Prerequisites: No- Corequisites: No4. Course objectives:

Objectives	Descriptions	Program Outcomes
4.1	To provide the basic knowledge about the probability and statistics, the method of experiment designs and data analysis in aquaculture	2.1.2.b
4.2	To train the student on the skills of experimental designs. Data collection and data analysis using statistical softwares	2.2.2
4.3	To train students to be independent, active, and critical thinking in doing research.	2.2.2
4.4	To develop a positive attitude toward aquaculture research and strengthen self/and team-study skills of experimental designs	2.3

5. Course learning outcomes:

COs	Descriptions	Objectives	POs
	Knowledge		
	The student must be able to recognize the basic		2.1.2.b
	knowledge about the probability and statistics:		
	 Probability, Normal distribution, Student's t 		
CO1	distribution, Chi square distribution, Fisher	4.1	
COI	distribution;	-1.1	
	 Mean, range, min, max, medium, mode, 		
	percentile, type of data or variable (interval, nominal,		
	rank)		

COs	Descriptions	Objectives	POs	
	Knowledge			
	The student must be able to outline the methods of			
	experimental designs in aquaculture:			
	 Indoor experiment design: Completely 			
	Randomized Design (CRD),		2.1.2.b	
CO ₂	Outdoor: Completely Randomized Block	4.1		
	Design (CRBD), Latin Square design (LSD)			
	Social economics research: Sampling			
	methods; sample size, sample selection and collection			
	data			
	The student must be able to identify the data			
	exploring and data explanation/interpreting the			
	variation of data collected:		2.1.2.b	
CO3	 Descriptive statistics, hypothesis tests, 	4.1		
	comparison of means, one-way ANOVA, 2-way	7.1		
	ANOVA, Correlation, linear/nonlinear regression,			
	Interpretation data via table, figure and			
	diagram			
	Skills			
	The student must be able to select method for data			
	collection and analysis (using software):			
CO4	Students can prepare experimental areas, setup	4.2, 4.3	2.2.2	
	experiment, collect and analyze data collected in a	1.23, 1.3	4.4.4	
	precise and accuracy ways.			
	The student must be able to indicate statistical			
	software to analyze experiment data:			
CO5	Student can employ the SPSS and Excel software to	4.2, 4.3	2.2.2.	
	analyze data collected and interpret results by	1.2, 1.5	dead to dead to dead to	
	scientific writing forms			
	Attitudes/Autonomy/Responsibilities			
	Students must have good attitude and a sense of			
CO6	learning with high progressive spirit; complete	4.4	2.3	
	assigned assignments independently			

Note: "COs" means Course Outcomes; "POs" means Program Outcomes

6. Brief description of the course:

The course aims to provide to students theoretical, practical knowledge and skills in scientific research concept, statistics applied, experimental design and statistical analysis of data related to aquaculture research.

Theory: the student must be able to (i) recognize probability and statistical terms and principles of scientific research; (ii) to arrange a research work (iii) and to recognize the methods of experimental design and statistical analysis.

Practice: the student must be able to (*i*) apply/compute different research/and statistical tools; (*ii*) to apply design experiments; and (iii) to analyze data using common statistical software; and (*v*) to write /and present research results in thesis.

7. Course structure:

7.1. Theory:

	Content	Hours	COs
Chapter 1.	Chapter 1. Probability Distributions		
1.1.	Probability, probability distribution, Binomial	2	CO1
	distribution		
1.2.	Normal probability distribution	1	CO1
1.3.	Sampling distribution of means	1	CO1
1.4.	Student's t distribution	1	CO1
1.5.	Chi square distribution	1	CO1
1.6.	Fisher distribution	1	CO1
Chapter 2.		3	
	Population and sample		
2.1.	Types of data	1	CO1
2.2.	Methods of data collection	1	CO1
2.3.	Descriptive of statistics	1	CO2
Chapter 3.	Hypothesis Tests	3	CO2, 3
3.1.	One-sample hypothesis	1	CO2, 3
3.2.	Two-sample hypothesis	1	CO2, 3
3.3.	Paired-sample hypothesis	1	
Chapter 4.	Single-factor Experiments	5	
4.1.	Analysis of variance (1-Way ANOVA)	2	CO3, 4
4.2.	Completely randomized design (CRD)	1	CO3, 4
4.3.	Randomized completely block design (RCB)	1	CO3, 4
4.4.	Latin square design (LS)	1	CO3, 4
Chapter 5.	Two-factor Experiments	2	
5.1.	Complete block design	1	CO3, 4
5.2.	.2. Two-way ANOVA		CO3, 4
Chapter 6.	Comparison Between Treatment Means	5	Set 1
6.1.			CO3, 4

6.2.	Least significant difference test (LSD)	1.5	CO3, 4
6.3.	6.3. Duncan's multiple range test		CO3, 4
6.4.	Tukey multiple range test	1.5	CO3, 4
Chapter 7.	Correlation	2	
7.1.	Pearson correlation	1	CO3, 4
7.2.	Spearman correlation	1	CO3, 4
Chapter 8.	Regression	3	
8.1.	Linear regression	1.5	CO 3, 4
8.2.	Non-linear regression	1.5	CO 3, 4

7.2. Practice:

	Content	Hours	COs
Unit 1.	Descriptive statistics and calculating the statistics	3	
	values		
1.1.	Mean, medium, percentile	1	CO1, 4,5,6
1.2.	Rang (min, max) standard deviation, standard error	2	CO1, 4,5,6
	of mean		
Unit 2.	Hypothesis Tests	4	
2.1.	Formal hypothesis test	1	CO2, 4,5,6
2.2.	One-sample hypothesis	1	CO2, 4,5,6
2.3.	Two-sample hypothesis	1	CO2, 4,5,6
2.4.	Paired-sample hypothesis	1	CO2, 4,5,6
Unit 3.	Single-factor Experiments	6	
3.1.	Analysis of variance (1_way ANOVA)	3.5	CO3, 4,5,6
3.2.	Completely randomized design (CRD)	1	CO3, 4,5,6
3.3.	Randomized completely block design (RCB)	1	CO3, 4,5,6
3.4.	Latin square design (LS)	0.5	CO3, 4,5,6
Unit 4.	Two-factor Experiments	3	
4.1.	Complete block design	2	CO3, 4,5,6
4.2.	2-Way ANOVA	1	CO3, 4,5,6
Unit 5.	Comparison Between Treatment Means	6	
5.1.	Least significant difference test (LSD)	2	CO3, 4,5,6
5.2.	Duncan's multiple range test	2	CO3, 4,5,6
5.3.	Tukey multiple range test	2	CO3, 4,5,6
Unit 6.	Correlation	4	
6.1.	Pearson correlation	2	CO3, 4,5,6
6.2.	Spearman correlation	2	CO3, 4,5,6
Unit 7.	Regression	4	
7.1.	Linear regression	2	CO3, 4,5,6
7.2.	Non-linear regression	2	CO3, 4,5,6

8. Teaching methods:

Students have to do the following duties:

- Lecture (theory)
- Computer Lab and take home exercises

9. Duties of student:

Students have to do the following duties:

- Hand-out
- Reading the books listed in references

10. Assessment of course learning outcomes:

10.1. Assessment

No.	Point components	Rules and Requirements	Weights	COs	
1	Lab. Exam	Math and Computer skill SPSS	40%	CO3-6	
		and excel)			
2	Midterm Exam	Theory of the definition of	20%	CO1,2,3,4	
		statistics and experiment setting			
		up			
3	Final Exam	Getting the knowledge about the	40%	CO5,6	
		aquaculture statistics to analyze			
		the data of set up experiments			
		and to interpret the results for			
		scientific writing			

10.2. Grading

- Grading components and final test scores will be marked on a scale of 10 (0 to 10), rounded to one decimal place.
- Course score is the sum of all the components of the evaluation multiplied by the corresponding weight. The course score is marked on a scale of 10 and rounded to one decimal place, then it is converted to score on a scale of 4 under the academic regulations of the University.

11. Learning materials:

Learning materials information	Barcode number
[1] Vo Nam Son, Do Thị Thanh Huong and Nguyen Thanh	639.015195 - S464
Phuong, 2015. Applied statistics in Aquaculture. Can Tho	TS005469
University Publication, 180p.	
[2] Ram C. Bhujel, 2009. Statistics for aquaculture. Willey-	639.8072'7-
BlackWell, A John Willey and Sons publications 240p	SH135.B48
	TS005473
[3] George W. S. and W. G. Cochran, 1989. Statistics methods.	519.5-S671
Iowa State University Press. Ames, Iowa 50010. 503p	TS001098

12. Self-study Guide:

Week	Content	Theory (hours)	Practice (hours)	Student's Tasks
1	Chapter 1. Probability Distributions 1.1. Probability, probability distribution, Binomial distribution and Poisson distribution 1.2. Normal probability distribution	6	3	Read [2]: page: 42-49; Read [3] page: 17-62; 117-130
2	Chapter 1. Probability Distributions (cont.) 1.3. Sampling distribution of means 1.4. Student's t distribution 1.5. Chi square distribution 1.6. Fisher distribution	6	3	Read [2]: page: 42-49; Read [3] page: 17-62; 117-130
3	Chapter 2. Population and sample 2.1. Types of data 2.2. Methods of data collection 2.3. Descriptive of statistics	4	2	Read [1]: Page 1-3 Read [2]: page: 55-70; Read [3] page: 17-62;
4	Chapter 3. Hypothesis Tests 3.1. One-sample hypothesis 3.2. Two-sample hypothesis 3.3. Paired-sample hypothesis	8	4	Read [1]: Page 28-63; 91-105 Read [3] page: 64-80;
5	Chapter 4. Single-factor Experiments 4.1. Analysis of variance (1-Way ANOVA) 4.2. Completely randomized design (CRD)	6	3	Read [1]: Page 65-86 Read [2]: page: 99-131; Read [3] page: 83-95;

6	4.3. Randomized	6	3	Read [1]: Page 65-86
	completely block design			
	(RCB)			Read [2]: page: 99-131;
	4.4. Latin square design			
	(LS)			Read [3] page: 83-95;
7	Chapter 5. Two-factor	6	3	Read [3] page: 83-95;
	Experiments			196-212; 297-329
	5.1. Complete block	,		
	design			
	5.2. Two-way ANOVA			
8	Chapter 6. Comparison	6	3	Read [1]: 28-34;
	Between Treatment			Read [3] page: 83-95;
	Means			
	6.1. Least significant			
	difference test (LSD)			
	6.2. Duncan's multiple			
	range test			
	6.3. Tukey multiple range			
	test			
9	Chapter 7. Correlation	6	3	Read [1]:
	7.1. Pearson correlation			Page 1-3106-115
	7.2. Spearman correlation			Read [2]:
				Page 135-161
				Read [3] page: 177-
				193; 398-415
10	Chapter 8. Regression	6	3	Read [1]:
	8.1. Linear regression			Page 134-144
	8.2. Non-linear regression			Read [2]:
				Page 135-161
				Read [3] page: 83-95;

Can Tho, 3.9.../...\$..../2022

HEAD OF DEPARTMENT

ON BEHALF OF RECTOR DEAN OF COLLEGE

* Von Ngọc Út

Lê Quốc Việt