MINISTRY OF EDUCATION AND TRAINING CAN THO UNIVERSITY

SOCIALIST REPUBLIC OF VIETNAM Independence - Freedom - Happiness

COURSE OUTLINE DETAILS

1. Course: Limnology (Ao hồ học)

- Code number: AQ209

- Credits: 3

- Hours: 30 theory hours, 30 practice hours, 60 self-study hours

2. Management Unit:

- Department: Applied Hydrobiology

- Faculty: College of Aquaculture and Fisheries

3. Requisites:

- Prerequisites: No - Corequisites: No

4. Course objectives:

Objectives	Descriptions	Program Outcomes
4.1	4.1 To provide students a solid foundation of concepts to understand the complexity and dynamics of freshwater ecosystems including lakes and ponds in order to manipulate in a way to manage well the ecosystems.	
4.2	To train students analyze and identify the aquatic organisms living in lake/pond ecosystems	2.2.1.a
4.3	To develop critical thinking skills, confidence for students (through in-class group discussions, presentations, and laboratory exercises)	2.2.2
4.4	To raise student's awareness on self-study and long life study attitude	2.3

5. Course learning outcomes:

COs	Descriptions	Objectives	POs	
	Knowledge			
CO1	Describe the physical, chemical, biological and ecological characteristics and their dynamics in lakes and ponds	4.1	2.1.2.a	
CO2	Explain the ecological processes of interaction and relationships between biotic and abiotic factors in lake and ponds	4.1	2.1.2.a	
CO3	Characterize the common aquatic groups in lakes and ponds and freshwater ecosystems	4.1	2.1.2. b	
	Skills			

COs	Descriptions	Objectives	POs	
	Knowledge			
CO4	Collect and identify plankton and some water	4.2	2.2.1.a	
CO4	parameters in freshwater ecosystems	7.2	2.2.1.a	
005	Develop ability of presentation, discussion and team	4.3	2.2.2	
CO5	working	4.5	2.2.2	
	Attitudes/Autonomy/Responsibilities			
CO6	Display self-responsibility, assignment commitment	4.4	2.3	
CO0	and attitude of long-life study	7.4	2.3	

6. Brief description of the course:

The course will provide students knowledge on chemical, physical, geological, biological, and ecological processes that influence the structure and function of aquatic communities; common aquatic plants, animals found in the ecosystems; the ecological relations among organisms in the ecosystems.

7. Course structure:

7.1. Theory:

Content		Hours	COs
Chapter 1.	Introduction on limnology	3	
1.1.	Definitions of limnology		CO1, CO2,
			CO6
1.2.	Importance of limnology study		
1.3.	Approaches in limnology study		
1.4.	History of limnology study		
1.5.	Formation of lakes		
Chapter 2.	Characteristics of water	3	CO1, CO2,
			CO6
2.1.	Structure		
2.2.	Solubility		
2.3.	Salinity of water		
2.4.	Buffer system		
2.5.	Viscosity		
2.6.	Lake wave and seich		
Chapter 3.	Water physical characteristics	6	CO1, CO2,
		1	CO6
3.1.	Light and its effects on organisms		
3.2.	3.2. Heat and water stratification		
3.3.	Lake mixing patterns		
3.4.	Oxygen cycle		
3.5.	Carbodioxide cycle		

Chapter 4.	Water quality in ponds	3	CO1, CO2,
			CO5
4.1.	Physical characters		
4.2.	Chemical characters		
4.3.	Water quality management		
Chapter 5.	Nutrients	3	CO1, CO2, CO5
5.1.	Resource limitation		
5.2.	Phosphorus cycle		
5.3.	Nitrogen cycle		
5.4.	Ecological Stoichiometry		
Chapter 6.	Biotic profile of lakes and ponds	6	CO3, CO4, CO5
6.1.	Biological diversity of lakes and ponds		
6.2.	Aquatic invertebrates (protozoa, rotifers,		
	cladoceran, copepods)		
6.3.	Aquatic vertebrates (fish, birds, reptiles)		
6.4.	Macrophytes		
6.5.	Importance of aquatic organisms in lakes and ponds		
Chapter 7.	Population dynamics	3	CO3, CO4, CO5
7.1.	Phytoplankton		
7.2.	Zooplankton		
7.3.	Loss and gain		
Chapter 8.	Ecological relationships	3	CO1, CO2,
			CO3, CO4,
8.1.	Competition		
8.2.	Predation		

7.2. Practice

	Content	Hours	COs
Unit 1.	Preparation of instruments	5	CO1, CO2, CO4
1.1.	Secchi disk design		
1.2.	Experimental equipment preparation		
Unit 2.	Determination of chlorophyll-a in different fertilization regimes	5	CO1, CO2, CO4, CO5, CO6

2.1.	Experiment design (Fertilizer (NPK) supplied at 1,		
	2, 3 and 4 g/m3 (in 20 L buckets)		
2.2.	Sampling and monitor temperature, pH, DO, EC and		
	TDS		
2.3.	Analyzing chlorophyll-a		
2.4.	Results presentation		
Unit 3.	Determination of water quality parameter in	5	CO1, CO2,
	ponds		CO4, CO5,
			CO6
3.1.	Measurement and analysis of temperature and pH		
3.2.	Measurement and analysis of transparency		
3.3.	Measurement and analysis of DO		
Unit 4.	Identification of phytoplankton	5	CO3 CO4,
			CO5, CO6
4.1.	Field sampling (in ponds)		
4.2.	Qualitative and quantitative analysis		
4.3.	Results presentation		
Unit 5.	Identification of zooplankton	5	CO3, CO4,
			CO5, CO6
5.1.	Field sampling (in ponds)		
5.2.	Qualitative and quantitative analysis		
5.3.	Results presentation		
Unit 6.	Identification of zoobenthos	5	CO3, CO4,
			CO5, CO6
6.1.	Field sampling (in ponds)		
6.2.	Qualitative and quantitative analysis		
6.3.	Results presentation		
TOTAL CONTRACT CONTRACT			

8. Teaching methods:

- Class lectures
- Group discussion, presentation
- Practical exercises

9. Duties of student:

Students have to do the following duties:

- Attending at least 80% of theoretical session
- Attending 100% hours of practical and reporting results
- Participating in group discussions and presentation
- Taking quizzes
- Taking final test

10. Assessment of course learning outcomes:

10.1. Assessment

No.	Point components	Rules and Requirements	Weights	COs

1	Attendance Number of attendance		5%	CO6
		hour/total class hours		
2	Work assignment	Seminar/presentation	15%	CO5, CO6
		Participation confirmed by		
		team		
3	Lab work 100% participating in lab work		15%	CO4, CO5,
				CO6
4	Mid term exam	Multiple choice exam. Not	15%	CO1, CO2,
		absent		CO3, CO4
5	Final exam	Multiple choice combined with	50%	CO1, CO2,
		written exam		CO3, CO4
		Attending at least 80%		
		theoretical hours and 100%		
		practical hour of lab work		
		Compulsory exam		

10.2. Grading

- Grading components and final test scores will be marked on a scale of 10 (0 to 10), rounded to one decimal place.
- Course score is the sum of all the components of the evaluation multiplied by the corresponding weight. The course score is marked on a scale of 10 and rounded to one decimal place, then it is converted to A-B-C-D score and score on a scale of 4 under the academic regulations of the University.

11. Learning materials:

Learning materials information	Barcode number
[1] Dodson, S. 2005. Introduction to limnology. McGraw Hill	TS 003802
Companies. 400pp.	
[2] Claude E.Boyd, 1998. Water quality for Pond Aquaculture.	TS.003885
Research and Development Series No.43, Auburn University.	
[3] Pechenik, J. A. (2000). Biology of the invertebrate. The	TS.002074
McGraw- Hill Companies, Inc.	77748 8 8

12. Self-study Guide:

Week	Content	Theory (hours)	Practice (hours)	Student's Tasks
1	Chapter 1:	6	3	Students should read in advance:
	Introduction on			+ Reference [1]: from p3-23
	limnology			
	1.1. Definitions of			
	limnology			
	1.2. Importance of			
	limnology study			

	1.3. Approaches in limnology study			
	1.4. History of			
	limnology study			
	1.5. Formation of lakes			
2	Chapter 2:	6	3	Students should read in advance:
_	Characteristics of			+ Reference [1]: pp. 29-38, 50-
	water			56;
	2.1. Structure			+ Reference [2]: pp. 5-28
	2.2. Solubility			
	2.3. Salinity of water			
	and buffer system			
	2.4. Viscosity			
	2.5. Wave and seich			
	Chapter 3: Water	12	6	Students should read in advance:
	physical		-	+ Reference [1]: pp. 40-47, 231-
	characteristics			239;
	3.1. Light and its			+ Reference [2]: pp.5-28
	effects on organisms			
	3.2. Heat and water			
	stratification			
	3.3. Lake mixing			
	patterns			
	3.4. Oxygen and			
	carbon dioxide cycle		2	Students should read in advance:
	Chapter 4: Water	6	3	
	quality in ponds			+ Reference [2]: pp. 5-40;
	4.1. Physical characters 4.2. Chemical			
	characters			
	4.3. Water quality			
	management			
-	Chapter 5: Nutrients	6	3	Students should read in advance:
	5.1. Resource			+ Reference [1]: pp. 65-80;
	limitation			[-]. FF,
	5.2. Phosphorus cycle		,	
	5.3. Nitrogen cycle			
	5.4. Ecological			
	Stoichiometry			

Chapter 6: Biotic	12	6	Students should read in advance:
profile of lakes and			+ Reference [1]: pp. 239-251, 85-
ponds			157;
6.1. Biological			+ Reference [3]: pp.157-163;
diversity of lakes and			263-275; 357-364;
ponds			
6.2. Aquatic			
invertebrates			
(protozoa, rotifers,			
cladocerans,			
copepods)			
6.3. Aquatic			
vertebrates (fish, birds,			
reptiles)			
6.4. Macrophytes			
6.5. Importance of			
aquatic organisms in			
lakes and ponds			
Chapter 7:	6	3	Students should read in advance:
Population dynamics			+ Reference [1]: pp. 85-175
7.1. Phytoplankton			
7.2. Zooplankton			
7.3. Loss and gain			
Chapter 8: Ecological	6	3	Students should read in advance:
Relationships			+ Reference [1]: pp. 161-179;
8.1. Competition			77 m 7 m 7
8.2. Predation			

ON BEHALF OF RECTOR DEAN OF COLLEGE

Vũ Ngọc Út

Can Tho, 30.../...8.../20% HEAD OF DEPARTMENT

Huỳnh Trường Giang